
Google Summer of Code 2019 Proposal - PostgreSQL

TOAST’ing in slices

Personal Information

Name: Bruno Hass

Country: Brazil

Email: bruno_hass@live.com

Phone: 5548984704445

List of Deliverables

● Modify JSONB TOASTs to include data about keys contained in
the chunk.

● Support for JSONB queries capable of deTOAST’ing only the
relevant chunks to the query, e.g. chunks containing the
desired JSON keys.

● Modify array TOASTs to include information about the range of
elements present in the chunk.

● Support for array queries capable of deTOAST’ing only the
relevant chunk containing the element or range of elements
queried.

● Modify text TOASTs to be split into characters boundaries, not
bytes.

● Improve text pattern matching by gradually deTOAST’ing
chunks and pattern match them.

mailto:bruno_hass@live.com

Description

This proposal aims to modify how some types of TOASTed values are queried
and stored based on the type of the data. Currently, PostgreSQL splits values
that exceed one page in size into compressed chunks of 2KB and stores them in
a separate table. The drawback of the current approach is that it might become
quite slow for queries for the TOASTed data. Consider, for instance, a table with
a JSONB column containing several rows with TOASTed values for this column. If
we query a particular JSON key we must decompress all the TOASTed JSONB
chunks in order to check for the key value. The changes of this proposal will
modify the TOAST table row to contain information about the stored value in
order to make queries faster. For this example, each TOAST table entry would
contain information about which JSON keys that chunk has, so we need only to
decompress the relevant chunks. The same principle might be applied to other
variable length data types. For arrays we could keep information on the TOAST
table entry about which range of elements that chunk contains. For text fields
we could split them into characters boundaries instead of byte boundaries,
allowing faster searches for substring patterns.

Approach Outline

The first step necessary to support the optimized functionalities from the
description is to modify how the TOAST table works. Some kind of metadata
must be added to the TOAST table entry. The content of such metadata field will
depend on the type of the data. My approach would be to add a new column to
the TOAST table to contain such metadata. The next step would be to modify
how the functions responsible for TOAST’ing JSONBs, arrays and text works.
When TOAST’ing a JSONB we shall split it into chunks while keeping the tree
structure of the JSONB intact inside a chunk , except for possibly missing childs
of nodes, which are present in other chunks. The TOAST metadata field of each
chunk will store information about which keys are present in the chunk. The
function responsible for accessing a field from a TOASTed JSONB would read the
metadata field and skip the TOAST rows not containing the desired key.
For TOAST’ing an array we should split it into slices and store each slice in a
chunk. The metadata field would inform the range of the slice contained in the
chunk. When accessing an array element the responsible function would skip
the chunks not containing the desired element. Finally, for text we are going to
modify the TOAST’ing function to split at characters boundaries, so substring
pattern matching can be modified to gradually decompress the rows of the
TOASTed value and to apply the comparison to the chunk, stopping if it finds the
pattern.

